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Abstract

Finite element modelling of laminated structures with distributed piezoelectric sensor and actuator layers
and control electronics is considered in this paper. Beam, plate and shell type elements have been developed
incorporating the stiffness, mass and electromechanical coupling effects of the piezoelectric laminates. The
effects of temperature on the electrical and mechanical properties and the coupling between them are also
taken into consideration in the finite element formulation. The piezoelectric beam element is based on
Timoshenko beam theory. The plate/shell element is a nine-noded field-consistent element based on first
order shear deformation theory. Constant-gain negative velocity feedback, Lyapunov feedback as well as a
linear quadratic regulator (LQR) approach have been used for active vibration control with the structures
subjected to impact, harmonic and random excitations. The influence of the pyroelectric effects on the
vibration control performance is also investigated. The LQR approach is found to be more effective in
vibration control with lesser peak voltages applied in the piezo actuator layers as in this case the control
gains are obtained by minimizing a performance index. The application of these elements in high-
performance, light-weight structural systems is highlighted.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

The coupled electromechanical properties of piezoelectric ceramics and their availability in the
form of thin sheets make them well suited for use as distributed sensors and actuators for
controlling structural response. In the sensor application, mechanically or thermally induced
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deformations can be determined from measurement of the induced electrical potential (direct

piezoelectric effect), whereas in actuator applications deformation or strains can be controlled
through the introduction of appropriate electric potential (converse piezoelectric effect). By
integrating distributed piezoelectric sensors/actuators and advanced composites, the potential
exists for forming high-strength, high-stiffness, light-weight structures capable of self-monitoring
and self-controlling. This technology has numerous applications such as active vibration and
buckling control, shape control, damage assessment and active noise control. The developments
of these smart structures offer great potential for use in advanced aerospace, hydrospace, nuclear,
defence and automotive structural applications. Study of such smart structural systems have been
the focus of active research in the recent past.
Distributed vibration control of beams using the piezoelectric effect has been studied by Bailey

et al. [1], Crawley and Luis [2] and Tzou [3]. In terms of achieving very high damping, only
limited success has been achieved by these distributed control approaches. Tzou has studied
the boundary control of beams in Chapter 6 of his recent book [4]. Two control algorithms,
namely a displacement feedback and velocity feedback are implemented and their control
effectiveness evaluated. It has been shown that velocity feedback controls were much more
effective. A one-dimensional mathematical model for determining the mechanical responses of
beams with piezoelectric actuators has been proposed by Shen [5]. This model is based on
Timoshenko beam theory with the host beam and piezoelectric patches being separately
modelled using beam elements. Kinematic assumptions are made to satisfy the compatibility
requirements in the vicinity of the interfaces between the piezoelectric devices and the main
structure.
The theory of laminated piezoelectric plates for the design of distributed sensors/actuators is

given by Lee [6]. He provided governing equations and reciprocal relationships. Structural
identification and control of a plate model with distributed piezoelectric sensor/actuator is studied
by Tzou and Tseng [7]. They have proposed thin piezoelectric hexahedron finite element with
three internal degrees of freedom. Ha et al. [8] have developed an eight-noded three-dimensional
composite brick element and studied the response of laminated composites containing distributed
piezoelectric ceramics subjected to both mechanical and electrical loadings. Three-dimensional
incompatible modes were introduced to take into account the global bending behavior resulting
from the local deformations of the piezoceramics. Four-noded, 12-degree-of-freedom plate
bending element with one electrical degree of freedom has been proposed by Hwang and Park [9].
In chapter 10 of the book by Tzou [4], a piezoelectric thin hexahedron solid finite element with
internal degrees of freedom is presented and applied to distributed sensing and control of
continua. A finite element analysis of laminated composite structures containing distributed
piezoelectric actuators and sensors has been proposed by Detwiler et al. [10]. The formulation is
based on the shear flexible QUAD4 isoparametric element. Static shape control of intelligent
structures with distributed piezoelectric sensor/actuator has been proposed by Wang et al. [11].
They have formulated a piezoelectric four-noded plate bending element based on classical plate
theory and included the electrical degree of freedom at each node. A finite element model based on
classical lamination theory has been developed by Lam et al. [12] for the active vibration control
of a composite plate containing distributed piezoelectric sensors/actuators.
Vibration control of composites containing piezoelectric polymers has been studied using

finite shell element by Lammering [13]. Classical lamination theory is extended to account for
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piezo-electric materials and finite element formulation is based on the shear elastic shell theory of
the Reissner–Mindlin type. A generic theory for the intelligent shell system has been developed by
Tzou and Gadre [14]. System equations of motion coupling sensing and control effects are
derived. Tzou and Ye [15] have analyzed piezoelectric structures with triangular shell elements
derived based on the layerwise constant shear angle theory. Saravanos [16] has studied the
behavior of composite shell structures. He has developed a shell finite element based on mixed
laminate theory that combines single-layer assumption for the displacements and a layerwise
representation for the electric potential.
Another area where these piezoelectric materials provide dramatic advantages is in the

development of smart structures with the capability to sense thermally induced distortions and to
actively compensate for adverse thermomechanical conditions. This coupled thermoelectrome-
chanical behavior of the smart structures with distributed piezoelectric sensors and actuators
needs to be understood in order to effectively control such structures. Finite element formulation
of thermopiezoelectric beam like structures has been proposed by Rao and Sunar [17] and applied
to distributed dynamic measurement and active vibration control. It has been established that
thermal effects have an impact on the performance of a distributed control system and the degree
of impact may vary depending on the piezoelectric material, the environment where the system
operates, and the magnitude of the feedback voltage. Piezothermoelastic effects of distributed
piezoelectric sensors/actuator and structural systems are studied by Tzou and Ye [18]. They have
investigated distributed controls (static and dynamic) of piezoelectric laminates subjected to a
steady state temperature field. Lee and Saravanos [19] have studied the coupled mechanical,
electrical and thermal response in modern smart composite beams. The study accounted for
thermal effects, which may arise, in the elastic and piezoelectric media at the material level
through the constitutive equations. A review of theoretical developments in thermopiezoelasticity
having relevance to smart composite structures is presented by Tauchert et al. [20]. The equations
governing linear response of piezothermoelastic media are outlined, and a general solution
procedure based on potential functions is described.
The present piece of work deals with issues related to finite element modelling of the

piezolaminated beam, plate/shell structures including the thermoelectromechanical coupling
effects in the constitutive relations. The formulations are based on first order shear
deformation theories. The plate/shell element used is derived based on the variationally
correct field consistency principle [20] which can be used starting from a thin shell to thick
shell, isotropic to laminated composite plate/shells without the need of under-integration of
shear and membrane energies. This is one of the unique features of the present work. Also
in the present work various control strategies like constant-gain negative velocity feedback
and Lyapunov feedback which are classical control theories based on output feedback
and a linear quadratic regulator (LQR) scheme which is an optimal control theory based on
full state feedback are considered and their relative performance is discussed. This is
another unique feature of the present work. This work also considered the pyroelectric
effect of the piezoelectric sensors/actuators due to the temperature variation of the environ-
ment. The authors’ intent is to develop thermopiezoelectric beam, plate/shell finite elements,
apply these elements to model beam and plate/shell structures with distributed piezo-
electric sensors and actuators and study the active control performance with various control
strategies.
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2. General layout of the system

A piezoelectric laminated elastic structure as shown in Fig. 1 is considered. Two thin layers of
piezoelectric material are bonded on the top and bottom surfaces of the beam. One layer serves as
a distributed sensor and the other as a distributed actuator. The effective axis of the piezoelectric
layer is aligned with the length and breadth directions of the structure to ensure the maximum
piezoelectric effect. The signal from the distributed sensor is used as a feedback reference in a
closed-loop feedback control system. The control laws determine the feedback signal to be given
to the distributed actuator. In Fig. 1, F(t) is the disturbing force, fs is the voltage generated by the
sensor and fa is the voltage given to the actuator in order to control the structural deformations.
The sensor signal fs is a function of strains in the structure. The voltage fa; applied to the
actuator, develops effective control forces and moments.

3. Modelling and formulation of the piezolaminated beam element

Fig. 2 shows the piezolaminated beam with distributed PZT sensor and actuator on the top and
bottom surfaces. It is assumed that the piezoelectric layers are perfectly bonded to the surface of
the beam and also the bonding layers are thin. Hence the contribution of the bonding layers on
the mass and stiffness of the beam is negligible. However, the contribution of the piezoelectric
sensor and actuator layers on the mass and stiffness of the beam is considered. Timoshenko shear
flexible beam theory has been used and perfect continuity without any slip is assumed at the
interfaces. The applied voltage is assumed to be uniform along the beam.

3.1. Finite element formulation

The geometry of the beam element indicating the nodal deformations is as shown in Fig. 3. The
axial displacement, transverse displacement and transverse rotation of the beam are denoted by u;
w and yy respectively. x represents the co-ordinate in the axial direction. u; w and yy are
interpolated using a linear polynomial in x defined over the element length Le: The local nodal
displacements for a typical element (Fig. 3) are given by

fdge ¼ f u1 w1 yy1 u2 w2 yy2 g
T: ð1Þ

Intelligent
Control
SystemBase Structure

Distributed Actuator

Distributed Sensor F(t)
 φ φ

 φ φ

s

 a

Fig. 1. General layout of the system.
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The axial displacement, transverse displacement and transverse rotation are expressed in terms
of the nodal displacements by finite element shape functions as

u ¼ ½NuðxÞ�fdge; w ¼ ½NwðxÞ�fdge; yy ¼ ½Nyy
ðxÞ�fdge; ð2Þ

where ½NuðxÞ�; ½NwðxÞ� and ½Nyy
ðxÞ� are the shape functions.

The element stiffness and mass matrices of the beam with the piezoelectric layers are evaluated
from the potential and kinetic energies due to the beam deformations and the element force vector
due to external disturbance forces is evaluated from the virtual work, in the usual way.
For one-dimensional structures with uniaxial loading, the constitutive equation of the

piezoelectric materials coupling elastic and electric fields (IEEE standard on piezoelectricity
[21]) can be written as

E

D

" #
¼

Sp11 d31

d31 eT33

" #
s
%E

" #
; ð3Þ

where D is the electrical displacement (charge/area in the beam transverse direction (z direction)),
%E is the electrical field (voltage/length along the transverse direction), E is the mechanical strain in
the axial direction (x direction), and s is the mechanical stress in x direction. Sp11 is the elastic
compliance constant, eT33 is the dielectric constant, and d31 is the piezoelectric strain constant.

Sp11 ¼
1

Ep

and %E ¼
fpðtÞ

hp

; ð4Þ
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Fig. 2. A cantilever beam with distributed actuator and sensor.
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Fig. 3. Finite element discretization of the beam.
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where Ep is the Young’s modulus of the piezoelectric material, fp is the voltage applied (in the
case of actuator)/induced (in the case of sensor) in the piezoelectric material and hp is the thickness
of the piezoelectric material (subscript p represents the actuator or sensor piezoelectric layer).
The virtual work done by the induced strain (force) in the actuator is given by

DWa ¼
Z Le

0

Ead31a
bfaðtÞD

@u

@x
� ra

@yy

@x

� �
dx ¼ Ead31a

bfaðtÞðDu � raDyyÞj
x¼Le

x¼0

¼ Ead31a
bfaðtÞfDdg

T
e

Nu Leð Þ½ �

Nyy
Leð Þ

� �
" #T

1

�ra

( )
�

Nu 0ð Þ½ �

Nyy
0ð Þ

� �
" #T

1

�ra

( )0
@

1
A

¼ fDdgTe Ead31a
bfaðtÞ 
 f�1 0 ra 1 0 �ra gT ¼ fDdgTe fPagefaðtÞ; ð5Þ

where fPage is the piezoelectric element force vector which maps the applied actuator voltage to
the induced displacements and ra is the distance measured from the neutral axis of the beam to the
mid-plane of the actuator layer (subscript a represents the piezoelectric actuator layer). fPage can
be written as

fPage ¼ Ead31a
b 
 f�1 0 ra 1 0 �ra gT ¼ f�Fa 0 Ma Fa 0 �Ma gT: ð6Þ

Here, Fa and Ma are the axial control forces and the bending control moments respectively. It
can be noted that the piezoelectric induced force and moment results in boundary actions at the
ends of the piezoelectric layer due to the force cancellation at common nodes when continuity
between elements is enforced.
Using Hamilton’s principle, the equations of motion for an element can be obtained as

½M�ef.dge þ ½K �efdge ¼ ffdge þ fPageffaðtÞg; ð7Þ

where M½ �e is the element mass matrix and K½ �e is the element stiffness matrix obtained from the
kinetic and potential energies of the beam with the piezoelectric sensor and actuator layers due to
axial and bending deformations. The global equations of motion obtained by assembling the
elemental equations is given by

½M�f.dg þ ½C�f’dg þ ½K �fdg ¼ ffdg þ fPagffaðtÞg; ð8Þ

where C½ � is the structural damping, represented as equivalent viscous damping.
Assuming that the system response is governed by the first m modes of the system, the equations

of motion (8) can be transformed, using the modal vector matrix, to the reduced modal space
form:

½ %M�f.Zg þ ½ %C�f’Zg þ ½ %K�fZg ¼ f %fdg þ f %PagffaðtÞg; ð9Þ

where ½ %M�; ½ %C� and ½ %K� are m 
 m diagonal matrices because of the orthogonality of the mode
shapes with respect to the mass and stiffness matrices. fZg is the modal displacement vector. In
this case ½ %C� which is the damping matrix in the modal domain is expressed as

%Cij ¼ 2xioi for i ¼ j and %Cij ¼ 0 for iaj;

where xi is the modal damping factor for the ith mode, and oi is the natural frequency for the ith
mode. In the numerical calculations, in the present paper, a modal damping factor of 0.2% is
assumed for all the modes considered for the response. In order to apply the optimal control
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schemes like LQR, it is convenient to have the equations representing the dynamics of the system

in a state space form. Introducing the state space variable fxg as fxg ¼
�’Z
Z

�
; the system dynamics

can be written in state space form as

f’xg ¼ ½A�fxg þ ½B�ffag þ ½ #B�fudg; ð10Þ

where ½A� is the system matrix, ½B� is the control matrix and ½ #B� is the disturbance matrix, which
are given by

½A� ¼
�½ %M��1½ %C� �½ %M��1½ %K�

½I � ½0�

" #
; ½B� ¼

½ %M��1f %Pag

½0�

" #
; ½ #B� ¼

½ %M��1f %fdg

½0�

" #
; ð11Þ

fudg is the disturbance input vector and ffag is the control input (to actuator). The output
equation can be written in the physical co-ordinates as fyg ¼ ½Co�fdg; where ½Co� is the
output matrix. On transforming to modal co-ordinates and then to state space co-ordinates, the
output equation could be written as

f %yg ¼ ½ %Co�fxg: ð12Þ

The state space model of the system dynamics is thus represented by Eqs. (11) and (12).

3.2. Sensor equations

If the sensor is extending on the beam from x ¼ x1 to x ¼ x2 and x2 > x1 (Fig. 4) then the
sensor voltage fs contributed by the bending effect can be estimated by the normal strains in the
axial direction of the beam. Thus the sensor voltage is given by

fs ¼ �
hs

x2 � x1

Z x2

x1

g31Esrsyy;x dx ¼ �
hs

x2 � x1
g31Esrsyyjx2

x1
; ð13Þ

where hs is sensor thickness, g31 is the piezoelectric stress constant, rs is the distance measured
from the neutral axis of the beam to the mid-plane of the sensor layer and Es is the Young’s
modulus of the sensor.
It can be noted from the sensor equation that the output signal is proportional to the rotation

of the beam at both ends of the sensor layer. For a fully distributed sensor, that is, x1 ¼ 0 and
x2 ¼ L; where L is the length of the beam, the sensor signal becomes

fs ¼ �
hs

L
g31Esrsyyj

L
0 : ð14Þ

Beam (Thickness - h )

Sensor (Thickness - hs )

Actuator (Thickness - ha )

x1 x2

L b

Z Z

X Y

Fig. 4. Layout of the beam with partially covered distributed piezoelectric actuator and sensor.

S. Narayanan, V. Balamurugan / Journal of Sound and Vibration 262 (2003) 529–562 535



Note that the sensor signal is zero if the slopes at both ends of the sensor become equal, for
example, antisymmetrical modes of a simply supported beam laminated with a symmetrically
distributed sensor layer. In such circumstances, segmented sensors and actuators with multi-
input–multi-output (MIMO) controllers can be used. After obtaining the sensing signal fs; the
actuator voltage fa to be applied across the actuator can be determined using any one of the
control laws as discussed below.

3.3. Control laws

In the present work two types of classical control laws, which are based on output feedback and
one optimal control law based on full state feedback are considered. The classical control laws
considered are constant-gain negative velocity feedback and Lyapunov feedback. The optimal
control law considered is LQR scheme. In the case of classical control laws the gains are
arbitrarily chosen, whereas in the case of optimal control law, an optimal control gain is obtained,
which minimizes an objective function. Brief descriptions of the control laws are as given below.

3.3.1. Constant-gain negative velocity feedback

In this method of control, the sensor signal fs is differentiated so that a strain rate (related to
the velocity) information is obtained and the actuator voltage fa is given by

faðtÞ ¼ �Gc
’fsðtÞ: ð15Þ

The velocity feedback can enhance the system damping and therefore effectively control the
oscillation amplitude. But as the velocity amplitude decays the feedback voltage also decreases.
This will reduce the effectiveness at low vibration levels for a given voltage limit.

3.3.2. Lyapunov feedback

In Lyapunov feedback control, the feedback voltage amplitude is constant but the sign is
opposite to the velocity. The amplitude of feedback signal can be expressed as

faðtÞ ¼ �fmax sgn½ ’fsðtÞ�; ð16Þ

where sgn½:� is a signum function and fmax is the magnitude of the control voltage. This is also
called bang–bang control. Note that the Lyapunov control scheme can introduce unstable
oscillations due to sudden change of feedback voltage and hence a dead zone is set up, as in the
equation below to prevent excessive chattering:

faðtÞ ¼ 0 when � fdeadofsofdead : ð17Þ

3.3.3. LQR optimal control
Linear quadratic regulator (LQR) optimal control theory [22,23] is used to determine the

control gains. In this, the feedback control system is designed to minimize a cost function or a
performance index which is proportional to the required measure of the system’s response. A state
feedback rather than output feedback is adopted to enhance the control performance. The cost
function used in this case is given by

J ¼
Z

N

0

ðf %ygT½Q�f %yg þ ffag
T½R�ffagÞ dt; ð18Þ
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where ½Q� and ½R� are the semi-positive-definite and positive-definite weighting matrices on the
outputs and control inputs, respectively. Larger (relatively) elements in ½Q� mean that we demand
more vibration suppression ability from the controller. The purpose of the second term in Eq. (18)
is to account for the effort being expended by the control system, so that small reductions in the
output response are not obtained at the expense of physically unreasonable actuator input levels.
Assuming full state feedback, the control law is given by

ffag ¼ �½Gc�fxg ¼ �½R��1½B�T½ #P�fxg; ð19Þ

where Gc½ � is the control gain.
½ #P� can be obtained by the solution of the Riccati equation given by

½A�T½ #P� þ ½ #P�½A� � ½ #P�½B�½R��1½B�T½ #P� þ ½Co�T½Q�½Co� ¼ 0: ð20Þ

The closed-loop system dynamics is given by

f’xg ¼ ð½A� � ½B�½Gc�Þfxg þ ½ #B�fudg ¼ ½Acl�fxg þ ½ #B�fudg; ð21Þ

where ½Acl� is the closed-loop system matrix. The eigen values of ½Acl� gives the damped natural
frequencies and damping ratios.
It can be noted that only few states of the system can be measured as the output of the sensor,

while all states of the system are used in obtaining the actuator voltage. Hence a state observer or
estimator is to be designed which can estimate all the state values from the measured signal. One
such observer is the Kalman filter which is an optimal state observer for a system contaminated
with process and measurement noise. An optimal control procedure that uses a Kalman filter as
an observer and a controller that minimizes a cost function of quadratic form is called an LQG
control method [22,23]. The MATLAB software has inbuilt functions for estimating the control
gains using LQR and LQG methods. In the present work, MATLAB software has been used for
solving the associated Riccati equation and obtaining the control gains in the cases of LQR
control methods.

3.4. Actuator equations

For a distributed piezoelectric actuator, as discussed in Eqs. (5) and (6), the distributed control
force Fa and control moment Ma acting on the beam are given by

Fa ¼ Ead31a
bfa; Ma ¼ raEad31a

bfa: ð22Þ

It can be noted that the control forces and moments are spatially distributed when the actuator
thickness is not uniform throughout. In the case when the control moments are not spatial
functions, the control effects can be introduced from boundaries via the boundary control. That
is, in the case of a cantilever beam the control moment can be assumed to be applied at the free
end whose magnitude is given by Ma:

4. Modelling and formulation of the piezolaminated plate/shell element

A composite shell structure is considered with thin PZT piezoceramic layers embedded on top
and bottom surfaces. A �C continuous, shear flexible, nine-noded quadrilateral shell element
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derived based on field consistency principle [24] has been used and has been developed to include
the stiffness, mass and thermoelectromechanical coupling effects of the piezoelectric sensor and
actuator layers.

4.1. Constitutive relations

The linear constitutive equations coupling elastic field, electric field and thermal field in
piezoelectric medium is expressed by the direct and converse piezoelectric equations [17]. These
equations for the plate shape sensor and actuator are written as

fsg ¼ ½C�fEg � ½e�TfEg � flgY; fDg ¼ ½e�fEg þ ½e�fEg þ fPgY; ð23Þ

where fDg; fEg; flg; fPg; fEg and fsg are electrical displacement, electrical field, stress coefficient
of thermal expansion, pyroelectric coefficients, strain and stress vectors respectively. ½C�; ½e� and
½e�; are elasticity, piezoelectric and dielectric constant matrices respectively. Y is the global
temperature variation in �C.

4.2. Finite element formulation

A doubly curved shell is considered (Fig. 5) [25] with co-ordinates x; y along the inplane
direction and z along the thickness direction. Using the Mindlin formulation, the displacement u,
v and w at a point ðx; y; zÞ from the median surface are expressed as function of mid-plane
displacements uo; vo;w and independent rotations yx and yy of normal in xz and yz planes,
respectively, as

uðx; y; z; tÞ ¼ uoðx; y; tÞ þ zyxðx; y; tÞ;

vðx; y; z; tÞ ¼ voðx; y; tÞ þ zyyðx; y; tÞ;

wðx; y; z; tÞ ¼ wðx; y; tÞ: ð24Þ

Assuming small deformation and considering the effect of shear deformation, the total strain
could be expressed as

fEg ¼
Ep

0

( )
þ

zEb

Es

( )
; ð25Þ

y, v

x, u

z, w

 θ
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Fig. 5. Doubly curved piezolaminated nine-noded composite shell element.
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where fEpg are the mid-plane (membrane) strains, fEbg are the bending strains and fEsg are the
shear strains [25] and are written as

fEpg ¼

uo
;x þ ðw=RxÞ

vo
;y þ ðw=RyÞ

uo
;y þ vo

;x þ ð2w=RxyÞ

8>><
>>:

9>>=
>>;; fEbg ¼

yx;x

yy;y

yx;y þ yy;x � uo
;y=Rx � vo

;x=Ry

8><
>:

9>=
>;;

fEsg ¼
yx � w;x þ uo=Rx þ vo=Rxy

yy � w;y þ vo=Ry þ uo=Rxy

( )
: ð26Þ

In general, the electrical field fEg is expressed as fEg ¼ fEx Ey Ez g
T ¼ �ff;x f;y f;z g

T:
This element has five elastic degrees of freedom uo, vo, w, yx; yy per node, one temperature degree
of freedom, y per node and one electrical degree of freedom, f per piezoelectric layer, that is, the
electric potential f is assumed to be constant over an element and varying linearly through the
thickness of the piezoelectric layer.
The electric field strength considering a piezoelectric sensor and actuator layers is given by

f�Eg ¼ ½Bf�ffg ¼
0 0 ð1=tsÞ 0 0 0

0 0 0 0 0 ð1=taÞ

" #T
fs

fa

( )
; ð27Þ

where ts and ta are the thicknesses of the piezoelectric sensor and actuator layers respectively.
Using standard discretization techniques in an element the displacement field can be expressed in
terms of shape functions [26]. The thermal field is also expressed in terms of a similar set of shape
functions as used for the elastic displacements. The piezoelectric sensor and actuator layers are
considered as additional laminae of a composite laminate.
For a piezolaminated composite laminate, if fFg represents the membrane stress resultants

ðFxx;Fyy;FxyÞ; and fMg represents the bending stress resultants ðMxx;Myy;MxyÞ; we can relate
these to membrane strains, fEpg; and bending strain strains (curvature), fEbg; through the
constitutive relation as

fFg ¼ ½Aij�fEpg þ ½Bij�fEbg �
Z

tp

½e�TfEg dz �
Z

tp

flgY dz;

fMg ¼ ½Bij�fEpg þ ½Dij�fEbg �
Z

tp

z½e�TfEg dz �
Z

tp

zflgY dz; ð28Þ

where tp is the thickness of the piezoelectric layer, ½Aij�; ½Bij� and ½Dij� ði; j ¼ 1; 2; 6Þ are extensional,
bending-extensional and bending stiffness coefficients of the composite laminate [27]. It is
assumed that shear stress is not influencing the piezoelectric effect. If fSijg represents the
transverse shear force resultant ðSxz;SyzÞ; then it is related to the transverse shear strain through
the constitutive relation

fSg ¼ ½Eij�fEsg; ð29Þ
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where ½Eij� ði; j ¼ 4; 5Þ are transverse shear stiffness coefficients of the laminate [27]. Using the
variational principles the strain energy functional, U is given by

U ¼
1

2

Z
A

½fEpg
T½Aij�fEpg þ fEpg

T½Bij�fEbg þ fEbg
T½Bij�fEpg

þ fEbg
T½Dij�fEbg þ fEsg

T½Eij�fEsg� dA

�
Z

Vp

ðfEpg
T þ zfEbg

TÞ½e�TfEg dV �
Z

Vp

ðfEpg
T þ zfEbg

TÞflgY dV : ð30Þ

The element electrical energy is given by

W e ¼
1

2

Z
Vp

fEgTfDg dV ¼
1

2

Z
Vp

fEgTf½e�fEg þ ½e�fEg þ fPgYg dV ; ð31Þ

where Vp is the volume of the piezoelectric layer in an element.
The virtual work done by the surface force and the applied electrical charge is given by

DW s ¼
Z

S1

fD %ugTffsg ds �
Z

S2

fDEgTfqg ds; ð32Þ

where ffsg and fqg are the surface force intensity and surface electrical charge density respectively.
S1 and S2 are the surface areas where the surface forces and electrical charge are applied
respectively.
The element kinetic energy is given by

T ¼
1

2

Z
A

½Pð ’uo2 þ ’vo2 þ ’wo2Þ þ Ið’y2x þ ’y2yÞ� dA; ð33Þ

where A is the area of the element and

P ¼
Xn

k¼1

Z hk

�hk�1

r dz; I ¼
Xn

k¼1

Z hk

�hk�1

z2r dz; ð34Þ

n is the number of layers.
It is assumed that the dynamic coupling of heat transfer with structural deflection and electric

field are small. The temperature field can be calculated based on the given thermal excitation using
the principles of heat transfer. In the present study, the temperature field is assumed to be known
and steady. With these assumptions, using Hamilton’s principle, Langrange’s equations of
motion, for an element can be written as

½Muu�ef.dge þ ½Kuu�efdge þ ½Kuf�effge � ½Kuy�efyge ¼ fFsge; ð35Þ

½Kfu�efdge þ ½Kff�effge þ ½Kfy�efyge ¼ fFqge; ð36Þ

where ½Muu�e is the element mass matrix and ½Kuu�e is the element elastic stiffness matrix obtained
from the kinetic energy and strain energy functional [26]. ½Kfu�e ¼ ½Kuf�Te are the elastic–electric
coupling stiffness matrices and ½Kff�e is the electric stiffness matrix, ½Kuy�e is the elastothermal
stiffness matrix and ½Kfy�e is the electrothermal stiffness matrix. fFsge is the applied mechanical
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force and fFqge is the applied electrical charge. From Eqs. (35) and (36) we get

½Muu�ef.dge þ ½½Kuu�e � ½Kuf�e½Kff��1
e ½Kfu�e�fdge

¼ fFsge þ ½½Kuy�e � ½Kuf�e½Kff��1
e ½Kfy�e�fyge � ½Kuf�e½Kff��1

e fFqge: ð37Þ

When Eq. (36) is applied to sensors, where the external applied charge is zero, the sensed
voltage is given by

ffsge ¼ �½Kff��1
se ð½Kfu�sefdsge þ ½Kfy�sefygeÞ; ð38Þ

where subscript ‘s’ denotes the sensor layer. The global equations of motion can be obtained by
assembling the elemental equations and is given by

½Muu�ef.dg þ ½Cuu�ef’dg þ ½½Kuu� � ½Kuf�½Kff��1½Kfu��fdg

¼ fFsg þ fFethg þ fFpthg � ½Kuf�ffag; ð39Þ

where fFethg and fFpthg are the thermal force vectors due to the thermal strain effect and
pyroelectric effect, respectively, which are given by

fFethg ¼ ½Kuy�fyg; fFpthg ¼ �½Kuf�½Kff��1½Kfy�fyg: ð40Þ

Here, ½Muu�; ½Kuu�; ð½Kuf� ¼ ½Kfu�TÞ; ½Kff�; ½Kuy�; ½Kfy� and fFsg are the corresponding global
quantities, ffag is the actuator voltage vector and ½Cuu� is the internal structural damping.
Using normal mode transformation and introducing state space variables, the equations of

motion can be written as

f’xg ¼ ½A�fxg þ ½B�ffag þ ½ #B�fudg þ ½Bth�; f %yg ¼ ½ %Co�fxg; ð41Þ

where ½A� is the system matrix, ½B� is the control matrix ½ #B� is the disturbance matrix and ½Bth� is
the thermal disturbance matrix which are given by

½A� ¼
�½ %M��1½ %C� �½ %M��1½ %K�

½I � ½0�

" #
; ½B� ¼

�½ %M��1½ %Kuf�

½0�

" #
;

½B� ¼
½ %M��1f %Fsg

½0�

" #
; ½Bth� ¼

½ %M��1 f %Fethg þ f %Fpthg
� �

½0�

" #
; ð42Þ

fudg is the disturbance input vector and ffag is the control input and fyg is the output vector.
LQR optimal control theory [22] as detailed in Section 3.3, is used to determine the active

control gains.

5. Results and discussion

5.1. Vibration control using piezolaminated beam elements

The piezolaminated beam element has been validated for sensing and actuation performance
[28]. After validating the present formulation, the vibration control study has been made using a
steel cantilever beam (Fig. 6) of dimension 0.5m
 0.03m
 0.002m. Two PZT layers of thickness
40mm are bonded on top and bottom surfaces of the beam to act as a sensor and actuator

S. Narayanan, V. Balamurugan / Journal of Sound and Vibration 262 (2003) 529–562 541



respectively. The properties of PZT [29] are given in the Table 1. The beam is divided into 10
elements. The stiffness and the mass of the piezoelectric layers are included in the model. The
structural damping is neglected in this case, as the aim is to access the effectiveness of the active
control. The first six natural frequencies of the beam are 6.89, 43.285, 121.225, 237.72, 393.58 and
589.63Hz.
An external impulse load of 0.2N is assumed to act at the free end of the beam for 1ms

duration. The control is applied after 0.5 s of the application of the load, so as to have a
comparison between the controlled and uncontrolled response. The control performance with
constant-gain negative velocity feedback with gain 1 and 2 are shown in Figs. 7 and 8 respectively.
Fig. 9 indicates the damping ratios versus the gain for the constant-gain negative velocity
feedback. It can be noted that the damping ratio increases and reaches a maximum value and then

500 mm
30 mm

2 mm

PZT Sensor ( 40µm thick )

PZT Actuator ( 40µm thick )

Fig. 6. A steel cantilever beam with distributed PZT sensor and actuator.

Table 1

Material properties of the piezoelectric materials used

Property name PVDF PZT

Young’s modulus (N/m2) 2
 109 139
 109

Density (kg/m3) 1800 7500

Strain constant (d31) (m/V) 23
 10�12 11
 10�11

Stress constant (g31) (Vm/N) 0.216 0.010

Maximum electric field (V/mm) 30 1
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Fig. 7. (a) Tip displacement of piezolaminated cantilever beam subjected to 0.2N impact load at the tip and controlled

using constant-gain negative velocity feedback (gain=1). (b) The actuator voltage.
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decreases with the increase of the gain. This is due to high boundary feedback control effects at
the free end. As explained earlier, the distributed piezoelectric actuator applies a counteracting
moment to the cantilever beam at the free end when a feedback voltage is applied to the actuator.
As the feedback voltage becomes higher and higher the free end is further constrained and the
boundary condition gradually changes to a sliding-roller boundary condition [4]. Another point to
be kept in mind is that the actuator voltage should not exceed the breakdown voltage of the
actuator (at which it will loose its piezoelectric property).
Figs. 10–12 illustrate the control effectiveness due to Lyapunov feedback with a feedback

voltage of 0.1, 1 and 9V respectively. It can be noted that Lyapunov feedback is more effective in
controlling the vibration when compared to the constant-gain negative velocity feedback when
sufficient feedback voltage is applied. But the energy input is greater than that of the former case.
The inherent drawback of the Lyapunov feedback which is also called a bang–bang control is that
regardless of how small the feedback gain is, we expect to see a small amount of the residual
oscillations. Fig. 12 indicates that the vibration levels are reduced faster but low-amplitude
residual oscillation persists. This is due to a high feedback voltage being applied to the actuator
which also takes the direction opposite to the instantaneous direction of the velocity.
Figs. 13–15 indicate the control effectiveness using LQR optimal control with weighting

factor Q to be 108, 109 and 1010 respectively. The first mode damping factors in these cases
respectively are 0.0589, 0.1742 and 0.3815. The damping ratios and the peak actuator voltages for
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Fig. 8. (a) Tip displacement of piezolaminated cantilever beam subjected to 0.2N impact load at the tip and controlled

using constant-gain negative velocity feedback (gain=2). (b) The actuator voltage.
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constant-gain negative velocity feedback and LQR control are shown in Table 2. It can be noted
that LQR optimal control offers an effective control with lesser peak actuator voltages. In the
present case, the gain of the constant-gain negative velocity feedback should be less than 3, due to
the limitation of the maximum allowable voltage of the PZT used (that is, 2V/mm).
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Fig. 10. Tip displacement of piezolaminated cantilever beam subjected to 0.2N impact load at the tip and controlled

using Lyapunov feedback (feedback: 0.1V).
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Fig. 11. Tip displacement of piezolaminated cantilever beam subjected to 0.2N impact load at the tip and controlled

using Lyapunov feedback (feedback: 1V).
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Fig. 12. Tip displacement of piezolaminated cantilever beam subjected to 0.2N impact load at the tip and controlled

using Lyapunov feedback (feedback voltage 9V).
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The effectiveness of the active control strategy in controlling the response of the beam subjected
to harmonic load are demonstrated in Figs. 16 and 17 wherein harmonic loads of 0:2 sinð250tÞ and
0:2 sinð43:3tÞN are applied respectively at the free end. It can be noted that in the case indicated
by Fig. 17, the harmonic load applied is near the first natural frequency.
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Fig. 13. (a) Tip displacement of piezolaminated cantilever beam subjected to 0.2N impact load at the tip and controlled

using LQR control (Q=108, R=1). (b) The actuator voltage.
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Fig. 14. (a) Tip displacement of piezolaminated cantilever beam subjected to 0.2N impact load at the tip and controlled

using LQR control (Q=109, R=1). (b) The actuator voltage.
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Fig. 15. (a) Tip displacement of piezolaminated cantilever beam subjected to 0.2N impact load at the tip and controlled

using LQR control (Q=1010, R=1). (b) The actuator voltage.
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5.2. Vibration control using piezolaminated plate/shell elements

The piezolaminated plate/shell element has been validated for the sensing and actuation
performance of the piezoelectric sensors and actuators without considering the thermal effects
[26]. To demonstrate the correctness of the present formulation in solving the problems of thermal

Table 2

Damping ratio and peak actuator voltages for constant-gain negative velocity feedback and LQR control with different

values of control parameters

Type of control strategy First mode damping ratios Peak actuator voltages

Constant-gain negative velocity 0.0781 28.688

feedback control (gain=1)

Constant-gain negative velocity 0.1560 57.376

feedback control (gain=2)

Constant-gain negative velocity 0.2330 86.064

feedback control (gain=3)

LQR control (Q=108, R=1) 0.0589 0.9480

LQR control (Q=108, R=2) 0.0421 0.6696

LQR control (Q=109, R=1) 0.1742 3.0000

LQR control (Q=1010, R=1) 0.3815 8.9800
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Fig. 16. Tip displacement of piezolaminated cantilever beam subjected to harmonic load of 0.2 sin (250t)N at the tip

and controlled using constant-gain negative velocity feedback (gain=1).
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Fig. 17. Tip displacement of piezolaminated cantilever beam subjected to harmonic load of 0.2 sin(43.3t)N at the tip

and controlled using constant-gain negative velocity feedback (gain=1).
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stress, a case for which closed form/exact solutions are available has been solved using the present
formulation and results are compared with exact solutions. The temperature distribution, without
any external load, is assumed as Tðx; y; zÞ ¼ 2z: In Table 3, non-dimensional displacement %w ¼
w=h at the center of the plate (length to breadth ratio a=b ¼ 1; length to thickness ratio, a=h ¼ 100
with simply supported boundary conditions is compared with those of the closed form/exact
solution [30]. Other parameters considered in the above case are n ¼ 0:3; a ¼ 1
 10�6;E ¼
1
 107: It can be observed that the results based on the present formulation agree well with the
available solutions.

5.2.1. Piezothermoelastic behavior and control of a simply supported piezolaminated plate

Piezothermoelastic behavior and control of a simply supported piezolaminated aluminum plate
has been studied. The piezolaminated model considered (Fig. 18) is an aluminum plate 1 m

1 m
 0:005 m sandwiched between two PZT layers of 0:5 m
 0:5 m size and 250 mm thickness.
This plate has been modelled using the present piezolaminated plate element. The mesh size of
8
 8 has been used. Material properties are summarized in Table 4. It is assumed that all the
material properties are constant over the temperature range studied in this work. Three cases were
considered. In the first case, the piezothermoelastic effect (sensing capability) of the distributed
piezoelectric sensor due to thermal excitation has been considered. The second case is to examine
the deflection due to the thermal gradient. The third case is to demonstrate a control method to
simultaneously control the dynamic deflection and thermally induced static deflection.

Piezothermoelastic effect: voltage generation in the PZT sensor due to elevated temperature field. It
has been assumed that the plate with the PZT sensor and actuator is placed in an elevated
temperature field and the plate temperature quickly reaches a steady state. From Eq. (38), it can

1m

1m

PZT layer
0.5m × 0.5m × 0.25mm

5mm

Aluminum plate

Fig. 18. Piezolaminated aluminum plate.

Table 3

Non-dimensional central deflection of isotropic plate subjected to linear temperature distribution varying through the

thickness for simply supported boundary condition

Khdeir and Reddy [30] Present model

Non-dimensional central deflection (W/h) 0.19079
 10�4 0.19139
 10�4
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be noted that the temperature variation can induce an output voltage in the PZT sensor—the

pyroelectric effect. In addition, the thermally induced deformation can also induce a sensor signal.
This piezothermoelastic effect has been studied and these two sensor voltages are as shown in
Fig. 19. It can be noted that the thermal strain effect is more significant than the pyroelectric effect
on the piezoelectric layers.

Thermally induced deflection. In this case, a temperature gradient has been applied to the
piezolaminated plate such that the temperature of the bottom surface is higher than the top
surface. Due to this temperature gradient the middle of the plate deflects upwards. Fig. 20
indicates the centerline deflection of the plate for 5�C, 10�C, 20�C and 50�C temperature
gradients.

Active vibration control with prescribed thermal gradient. An initial velocity of 1 m=s has been
imposed on the middle of the plate and active vibration control performance has been studied
using a LQR control scheme with weighting parameters Q ¼ 108 and R ¼ 1: The controller is
switched on after 2 s and a natural structural damping of 1% has been assumed. Figs. 21 and 22
show the controlled center displacement versus time and actuator voltage versus time for the case
where there is no thermal gradient. Figs. 23 and 24 indicate the controlled center displacement
and actuator voltage for the piezolaminated plate subjected to a thermal gradient of 5�C when

Table 4

Material properties used

Properties PZT piezoceramic Aluminum

Young’s modulus, E (N/m2) 63.0
 109 6.8
 1010

Density, r (kg/m3) 7600.0 2800.0

Poisson’s ratio, n 0.3 0.32

Coefficient of thermal expansion, a (�C�1) 1.2
 10�4 23.8
 10�6

Piezoelectric strain constant, d31 and d32 (m/V) 1.79
 10�10 —

Electric permittivity, E11=E22=E33 (F/m) 1.65
 10�8 —

Pyroelectric constant, P3 (C/m
2/K) 0.25
 10�4 —
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Fig. 19. Sensor voltage generated due to thermal excitation (–’–, thermal strain effect; –m–, pyroelectric effect).
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subjected to a initial tip velocity of 1 m=s: It can be noted from Fig. 23 that there is thermally
induced offset, due to a temperature gradient of 5�C in the controlled response. That is, the
thermally induced offset is not controlled using the LQR scheme, which are only effective for
the control of dynamic oscillation. With the result that a static offset is still there even after the
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dynamic oscillations have been controlled. If the original equilibrium position is desired then we
have to control simultaneously both the thermally induced static deflection as well as the dynamic
oscillation, which need two control voltages, one to control the dynamic oscillation and the other
to control the thermally induced static deflection.

Active control of both the static deflection due to thermal gradient and dynamic deflection

simultaneously. Fig. 25 shows the reduction in the thermally induced static offset due to a static
voltage of 600V applied to both the piezoelectric layers (sensor and actuator layers) apart from
the dynamic control voltage. Fig. 26 shows how the static deflection is gradually reduced with the
increase of the static voltage applied to the sensor and actuator. Thus, in order to completely
control the plate, two control voltages need to be applied to the distributed piezoelectric layers,
one to compensate the thermally induced deflection and the other to control the dynamic
oscillations. It can be noted that the static control voltages needed to compensate the thermally
induced static deflection is quite high even for a small thermal gradient of 5�C. It should be noted
that excessively high actuator voltages have to be avoided so as to avoid depoling of the PZT.
Generally, the allowed field strength for a particular class/type of piezoelectric material is specified
by the manufacturer. Generally, it is 2 V=mm and for the present case of 0.25mm actuator
thickness the breakdown voltage is 500V. And hence, the PZT could not be effectively used to
compensate the static deflection induced due to the thermal gradient as it needs very high DC
voltage to be applied even for a small thermal gradient. Also it can be noted that the thermal
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gradient is a constant loading and hence is not tracked/controlled automatically by the LQR
control. This in a way is advantageous; otherwise excessive actuator voltages would be developed
when these piezolaminated smart structures are kept in a high-temperature environment,
damaging the PZT actuator. However, the transient displacement due to the sudden application/
removal of the thermal gradient can be controlled by LQR. This is shown by Figs. 27 and 28. In
this case, the controller is switched on after 2 s of the application of the initial velocity. The
thermal gradient is applied at 2.5 s and removed at 4.0 s. The figures indicate that the transient
displacement due to the application/removal of the thermal gradients is effectively controlled by
LQR while the static offset exists when the thermal gradient exists.

5.2.2. Active vibration control of a cantilevered composite plate using classical controllers
A cantilevered laminated composite plate of dimension 0.5m
 0.05m
 0.01m with both the

upper and lower surfaces symmetrically bonded with piezoceramic is considered. The plate

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

0 1 3 42 5
Time (s)

C
en

te
r 

di
sp

la
ce

m
en

t (
m

m
) 

Offset due to thermal gradient of
5°C is reduced due to application 
of static control voltage of 600
Volts on the sensor/actuator
layers

Fig. 25. Controlled dynamic response along with the static control voltage to control the offset due to the thermal

gradient of 5�C (offset due to thermal gradient of 5�C is reduced due to application of static control voltage of 600V on

the sensor/actuator layers).

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 100 200 300 400 500
Distance along centerline y axis

C
en

tr
al

 d
ef

le
ct

io
n 

(m
m

)

0 Volt

100 Volt

200 Volt

400 Volt

600 Volt

Fig. 26. Static control of the thermally induced static deflection (——, 0V; ........., 100V; , 200V; – – – –, 400V;

, 600V).

S. Narayanan, V. Balamurugan / Journal of Sound and Vibration 262 (2003) 529–562 551



-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

0.0 1.0 2.0 3.0 4.0 5.0

Time (s)

C
en

te
r 

di
sp

la
ce

m
en

t (
m

m
)

Controller is
switched on

Thermal gradient

of 5°C is applied

Thermal gradient

of 5°C is

∆

Fig. 27. Controlled dynamic response when the thermal gradient of 5�C is applied, maintained for 1.5 s and removed

(Q=109, R=1).

-125

-100

-75

-50

-25

0

25

50

75

100

125

0.0 1.0 2.0 3.0 4.0 5.0

Time (s)

A
c
tu

a
to

r 
v
o
lt
a
g
e
 (

V
o
lt
s
)

Fig. 28. Actuator voltage when the thermal gradient of 5�C is applied, maintained for 1.5 s and removed (Q=109,

R=1) corresponding to Fig. 27.

S. Narayanan, V. Balamurugan / Journal of Sound and Vibration 262 (2003) 529–562552



consists of four composite layers (�45/45/�45/45) of 2.5mm thickness each. The piezoelectric
layers are of thickness 0.1mm each. The material properties are as shown in Table 5. An impulse
load of 0.2N for 1ms is applied at the free end of the plate. As in the case of the beam the classical

Table 5

Material properties used

Properties PZT piezoceramic T300/976

Young’s modulus, E11, N/m2 63.0
 109 150
 109

Young’s modulus, E22=E33, N/m2 63.0
 109 9.0
 109

Poisson’s ratio, n12 ¼ n13 ¼ n23 0.3 0.3

Shear modulus, G12, N/m2 24.2
 109 7.1
 109

Shear modulus, G13=G23 (N/m2) 24.2
 109 2.5
 109

Density, r (kg/m3) 7600.0 1600.0

Piezoelectric constant, d31 and d32 (m/V) 2.54
 10�10 —

Electric permittivity, E11=E22=E33 (F/m) 1.53
 10�8 —
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Fig. 29. Tip displacement of the piezolaminated composite plate controlled using constant-gain negative velocity

feedback (gain=1).
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Fig. 30. Tip displacement of the piezolaminated composite plate controlled using Lyapunov feedback (1V).
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control laws have been applied for active vibration control of piezolaminated plates. The dynamic
response for constant-gain negative velocity feedback is shown in Fig. 29. Fig. 30 indicates the
active control performance due to Lyapunov feedback. Then, the active control performance
when the plate is subjected to random loading, which is a band-limited white noise of power
spectral density 1
 10�6 N2=ðrad=sÞ in the frequency range of 0–1000 rad/s, is considered. The
uncontrolled and controlled responses at the free end of the plate are shown in Figs. 31 and 32
respectively. It can be noted that there is a reduction in mean square response (MSR) in the
controlled case.

5.2.3. Active vibration control of piezolaminated semicircular cantilevered steel shell
A semicircular steel shell embedded with a PZT piezoceramic layers on the top and a bottom

surface is considered as shown in Fig. 33. One end of the shell is fixed and the other end is free. It
is 250mm wide and 5mm thick with an inner radius of 250mm. The thicknesses of the PZT layers
are 0.25mm. The material properties of the PZT layers are Ea=Es=63
 109N/m2,
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Fig. 31. Uncontrolled tip response of the piezolaminated composite plate due to the random loading at the tip (mean

square response (MSR)=1.03956
 10�8).
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Fig. 32. Controlled tip response of the piezolaminated composite plate due to the random loading controlled using

constant-gain negative velocity feedback (gain=5) (mean square response (MSR)=2.25384
 10�10).
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ra=rs=7600 kg/m3, va=vs=0.3, d31=d32=�1.79
 10�10m/V, E11 ¼ E22 ¼ E33 ¼ 1:650

10�8 F=m: The first six natural frequencies are 8.61, 14.85, 27.22, 63.19, 93.16 and 207.88Hz
(for a fully covered sensor and actuator layers). Among this the frequencies 14.85 and 63.19Hz
correspond to the modes in the width direction and hence do not participate in the radial and
hoop direction response. An initial velocity of 0.5m/s is applied to the free end of the shell along
the hoop direction and the distributed vibration control of the shell with different lengths of
actuators is investigated. Initial structural damping is assumed to be 0.2%. The SISO LQR
scheme is used (with Q ¼ 1010 and R ¼ 1). Figs. 34 and 35 show the tip responses and actuator
voltages for 20% and 40% coverage of the actuators. Modal coupling between the first two
transverse modes and hence control spillover are indicated clearly in Fig. 35. Fig. 36 indicates the
frequency response plot comparing the uncontrolled and controlled responses. Fig. 37
summarizes the damping ratios for the first two transverse modes. It shows that the controlled

R=250mm250mm

PZT Sensor
(0.25mm thick)

PZT Actuator
(0.25mm thick)

5mm

Fig. 33. Semicircular piezolaminated steel shell (R=250mm) with one end fixed (thickness of the steel shell 5mm,

thickness of PZT sensor 0.25mm, thickness of PZT actuator 0.25mm).
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Fig. 34. Controlled tip response of the piezolaminated shell with 20% actuator coverage (along the hoop direction from

the fixed end) (——, hoop displacement; , radial displacement).
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damping ratio increases rather quickly as the extent of actuator coverage increases (from fixed
end) upto 40% coverage and afterwards levels off at 70% coverage. It can also be observed that
the second mode damping ratio initially increases upto 20% coverage and then decreases upto
40% coverage. This is due to the control spillover to the second mode. But as the extent of
actuator coverage increases, the second mode damping ratio also increases and levels off at 80%
coverage. It can be observed that we can get optimal vibration control performance with optimal
cost using 60% actuator coverage.
Then the active vibration control of the above piezolaminated shell with 100% sensor/actuator

coverage is studied with a specified thermal gradient. The inner surface of the shell is subjected to
25�C and the outer surface to 30�C with a thermal gradient of 5�C between inner and outer
surface, and an initial velocity of 0.5m/s is applied to the free end of the shell. The controlled
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Fig. 35. Controlled tip response of the piezolaminated shell with 40% actuator coverage (along the hoop direction from

the fixed end) (——, hoop displacement; , radial displacement).
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Fig. 36. Tip frequency response of the piezolaminated shell with and without control (——, no S/A coverage; .........,
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dynamic response for this case with LQR control (Q=1010 and R=1) is as shown in Fig. 38. It
can be noted that there is an offset due to the thermal gradient which is not controlled using LQR
control. It can also be noted that there is a positive offset in the hoop displacement and negative
offset in the radial displacement. As mentioned earlier this thermally induced offset can be
compensated only by the application of a large DC control voltage to the sensor/actuator layers.
Fig. 39 shows the controlled tip response with the LQR control and 500V DC control voltage
applied to the sensor/actuator layers. It can be noted that even with this high DC voltage, a
complete reduction/compensation of the thermally induced static offset could not be achieved.
Fig. 40 indicates the reduction in the thermally induced static displacement with the static control
voltage. As mentioned in Section 5.2.1, the thermally induced static offset cannot be effectively
controlled using piezoelectric actuators. However, the transient displacements due to sudden
application of thermal gradients can be controlled effectively with piezoelectric actuators using a
LQR controller.
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Fig. 38. Controlled tip response of the piezolaminated shell with 100% sensor/actuator coverage and thermal gradient

of 5�C (——, hoop displacement; , radial displacement; D, offset due to thermal gradient of 5�C).
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6. Conclusions

In the present paper, shear deformable piezolaminated beam, plate and shell finite elements are
formulated including the stiffness, mass and electromechanical coupling effects of distributed
piezoelectric sensor and actuator layers. In the case of plate/shell elements the thermoelec-
tromechanical coupling is also considered. The active vibration control performance of these
piezolaminated structures are studied using classical control methods like constant-gain negative
velocity feedback and Lyapunov feedback which are based on output feedback, and a modern
control method, the linear quadratic regulator (LQR) scheme, which is an optimal control theory
based on full state feedback. Their relative performance is discussed.
The study revealed that the LQR control scheme is very effective in controlling the vibration as

the optimal gain is obtained minimizing the cost function. Classical control methods like
constant-gain negative velocity feedback are quite simple and less effective.
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Fig. 39. Controlled tip response of the piezolaminated shell with 100% sensor/actuator coverage and thermal gradient

of 5�C and static control voltage of 500V applied to sensor/actuator (——, hoop displacement; , radial

displacement; D, offset due to thermal gradient of 5�C is reduced due to the application of static control voltage).
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A piezolaminated steel beam has been considered for the case studies. Thermally induced
voltage generation in the distributed PZT sensors has been investigated. It has been shown
that the sensor voltage contributed by the thermal strain effect is much more than that
contributed by pyroelectric effect. The thermally induced static deflection due to the thermal
gradients between top and bottom surfaces of the plate/shell has been investigated. Then the
active control of the piezolaminated plate/shell subjected to thermal gradients has been studied. It
has been shown that the thermal gradients induce a static deflection and if this needs to be
compensated, we need to apply additional static control voltages and the magnitude of static
control voltages needed are quite high even for a smaller thermal gradient. The deflection induced
due to thermal gradient, being a static load cannot be controlled by the LQR control methods,
which are effective only for dynamic control. However, the additional transient deflections
due to the sudden application of the thermal gradients can be controlled by the LQR control
method.

Appendix A. Nomenclature

½A�; ½Acl� open- and closed-loop system matrices
Ab; Ap cross-sectional area of beam and piezoelectric layer
Aa; As cross-sectional area of piezoelectric sensor layer and piezoelectric actuator
½B� control matrix
½ #B� disturbance matrix
½Bth� thermal disturbance matrix
b width of the beam
½C� global damping matrix
½ %C� global damping matrix in modal co-ordinates
½Co� output matrix
D electrical displacement
d31; d32 piezoelectric strain constants
½d� piezoelectric strain constant matrix
½e� piezoelectric stress constant matrix
{E} electric field
Eb; Ea young’s modulus of beam material and piezoelectric material
Ea; Es young’s modulus of piezoelectric actuator and piezoelectric sensor
Pc control force vector
{ %Pc} control force vector in modal co-ordinates
{fd} disturbance force vector
%fd

� �
disturbance force vector in modal co-ordinates

{Feth}, {Fpth} thermal force vectors due to thermal strain effect and pyroelectric effect
½Gc� gain matrix
Ib; Is; Ia moment of inertia of beam, piezoelectric actuator and sensor layers
½K � global stiffness matrix
½ %K� global stiffness matrix in modal co-ordinates
½K �e element stiffness matrix

S. Narayanan, V. Balamurugan / Journal of Sound and Vibration 262 (2003) 529–562 559



½Kuu� element stiffness matrix
½Kuf� element elastic–electric coupling stiffness matrix
½Kuy� element thermomechanical coupling stiffness matrix
½Kfy� element electrothermal stiffness matrix
½Kff� element electric stiffness matrix
ka shear correction factor (=5/6)
L beam length
Le element length
½M� global mass matrix
½M�e; ½Muu� element mass matrices
½ %M� global mass matrix in modal co-ordinates
{F}, {M}, {S} membrane, bending and shear force resultants
Sp11 elastic compliance constant of piezoelectric materials
Qp11 elastic stiffness constant of piezoelectric materials
½ #P� solution of the Riccati equation
½Q�; ½R� weighting matrices in the LQR scheme
Rx; Ry; Rz radii of curvatures in x, y and z directions
t time
ha; hs thickness of piezoelectric actuator and piezoelectric sensor
{ud} disturbance input vector
u; v; w displacement in x, y and z directions
½Nw�; ½Ny�; ½Nu� shape function matrices for transverse displacement, rotation, axial

displacement of the beam
y output vector
z co-ordinate in the transverse direction

Greek letters
l; P stress coefficient of thermal expansion, pyroelectric coefficients
Y global temperature variation in �C
½d� global displacement vector
{e} dielectric constant matrix of piezoelectric material
{Ep}, {Eb}, {Es} inplane, bending and shear strains
rb mass density of beam material
ra; rs mass density of piezoelectric actuator material and piezoelectric sensor material
y rotation of the beam
yx; yy rotations in x and y directions in the shell
oj natural frequency of the jth mode
fa; fs; actuator and sensor voltage
{fa} control input vector
{x} state vector

Subscripts
b; s; a beam, sensor and actuator
e elemental quantities
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